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forming a three-dimensional electron-density synthesis 
on a general plane affords a ready and graphic means 
of surveying the crystal structure of a planar molecule 
to the fullest extent permitted by the measured struc- 
ture factors. 

I t  is a pleasure to thank Dr Ronald Sass, one of 
whose programs first demonstrated to us the advan- 
tages of the stored table method in computing Fourier 
series, and Mr J. G. Sime for his part in the earlier 
three-dimensional structure analysis. 
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A Direct  Graphical  Method for the Prec ise  Determinat ion  of Lattice 
Parameters  of Tetrap, onal or Hexap, onal Crystals  
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(Received 4 April 1960) 

A direct graphical method for the precise determination of lattice parameters of tetragonal or 
hexagonal crystals is described. The method is applied to a binary equiatomic Ti-A1 alloy and the 
results presented. 

Introduction 

Methods for the precise determination of lattice 
parameters of tetragonal or hexagonal crystals involve 
dealing with three unknowns, a, c, and the drift or 
systematic error. This may be done analytically, as 
in the Cohen's least-squares method (Klug & Alex- 
ander, 1954, p. 485), or graphically by the method of 
Taylor & Floyd (1950) or the method of successive 
approximations (Klug & Alexander, 1954, p. 481). 

The least-squares solution involving three un- 
knowns is likely to be very tedious and cumbersome, 
and will yield erroneous results if the diffraction 
pattern is not perfectly indexed, which is sometimes 
difficult to do unambiguously in the complex back 
reflection region. The least-squares method offers no 
means of checking the validity of input data until 
after the solution is completed. In addition, this 
method applies equal emphasis on strong, easily 
measured reflections and on weak, poorly defined ones. 

The graphical method of successive approximations 
requires a separation of the data into two sets for 
extrapolation to approximate values of a and c 
separately. The approximate c/a ratio is used to repeat 
the extrapolation and obtain more refined values for 
a, c, and c/a, and the procedure is repeated as many 
times as necessary for a stable solution. The method 
of Taylor & Floyd (1950) uses h/c0 reflections to 
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determine a and the slope of the drift line by extra- 
polation. Then, from a prior estimation of the c/a ratio, 
an extrapolation for c may be made even if only a 
single 001 reflection is available by using the drift 
slope from the a determination, multiplied by the c/a 
ratio. 

The direct graphical  method  

In the course of an investigation on the effects of 
ternary additions on the lattice parameters of the 
tetragonal TiA1 gamma phase, a direct graphical 
extrapolation method for tetragonal crystals has been 
developed. This method can be used as readily for 
hexagonal crystals, as will be shown later. 

The direct graphical method depends upon finding 
the line of best fit (the drift curve) for a series of 
straight lines in three dimensional space, each straight 
line being derived from a particular crystal lattice 
reflection. Each reflection must, of course, be indexed 
in order to plot the straight line, which represents the 
locus of all possible a and c values that  can account 
for the reflection, but an advantage of the method 
is that  it shows immediately, by comparison with the 
other data, when any errors have been made and aids 
in the correct indexing. While interpretation of the 
method is based upon a three dimensional concept, 
its application requires only two dimensions, in effect, 
a two dimensional projection of the three dimensional 
situation. 
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Table 1. Diffraction data and calculations for plotting equation of line 

M a t e r i a l :  T i 5 O a [ o ,  A 1 5 O a / o .  R a d i a t i o n :  C u K a  z 1 . 5 4 0 5 1 A .  

L ine  P l a n e  0 4 sin s 0/~212 (h2+k2) /12  

1 202 32-76 0"1233 1 
2 220 33.12 - -  - -  
3 113 39.07 0.0744 2/9 
4 131 39.73 0.6884 10 
5 222 41.62 0.1859 2 
8 313 56.40 0.1299 10/9 

12 422 70.26 0-3733 5 

E q u a t i o n :  (a /c)  2 = (4 sin 20/),~12)a 2 --  (h  ~ + k~)]l 9") 

E q u a t i o n  of line 

(a/c)  ~ = 0"1233a ~ -  1 
a 9" = 15.9020 (ver t ica l  line) 
(a /c)  2 = 0 .0744a2- -0 .2222  
(a /c)  2 = 0.6884a 2 -  I0  
(a/c)  ~ = 0.1859a ~ -  2 
(a]c) ~ = 0.1299a ~ -  1.1111 
(a /c)  ~ = 0.3733a  2 -  5 

The equations of the straight lines are based upon a 
manipulation of the quadratic form of the Bragg 
equation for tetragonal crystals into the following 
forms : 

(a/c) e = [4 sin ~ 0 / (A2le)]a e - (h e + lee)~19" (general form) 

and 
a 9._- 22 (he + ke)/4 sin e 0 (for hkO planes) . 

The above equations are straight lines in variables 
a e and (a/c) e and can be plotted accordingly to repre- 
sent possible a and c values accounting for a given 
reflection at Bragg angle 0. Fig. 1 shows such a plot 
for seven reflections from the diffraction pat tern  of 
a binary equiatomic TiA1 alloy, using data  taken from 
Table 1. 
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Fig.  1. D i f f r a c t i o n  p e a k  lines for  TiA1 al loy.  

I t  may  be seen tha t  the lines fail to intersect at  a 
common point. Ideally, without drift or scatter, such 
a common intersection would occur. The problem in 
all practical cases to be solved, by this graphical 
method as well as the graphical method of successive 
approximations or the Cohen's least-squares method, 
is to determine the best solution or line of best fit 
representing the intersections of the plotted lines. 
In  order to do this it becomes necessary to greatly 
expand the scale of plotting, as is done for the same 

data  by Fig. 2(b). At  first glance the lines of Fig. 2(b) 
appear a hopeless jumble, but when it is realized tha t  
most of the apparent  lack of correlation is due to drift, 
a semblance of order is noted. The role of drift  may  
clearly be seen by an auxiliary plot, Fig. 2(a), which is 
derived from Fig. 2(b), and is, in fact, the third 
dimensional representation previously referred to. I t  
represents graphically the drift factor and is plotted 
in units of the extrapolation function, 

~[(cos 2 0/sin 0)+ (cos 2 0/0)] , 

to any convenient scale. 
The lattice parameter  error is a linear function of 

this extrapolation function over a very wide range of 
angles, and the lattice parameter  extrapolation line 
will be a straight line when plotted against this func- 
tion, as in :Fig. 2(a). An assumption which is made 
here is tha t  the drift of a 2 is linear with the extra- 
polation function, whereas the extrapolation function 
was derived empirically to be proportional to drift 
in a. The substitution of a 2 for a is justified because 
of the virtual  l inearity between a and a 2 over such a 
small range as tha t  under consideration--i.e.,  the 
parabolic curve relating a to a 2 is practically a straight 
line over the interval, say, from a2= 15.80 to 16.00. 
A further assumption is tha t  the c/a ratio remains 
constant throughout the range of angular values 
(the c/a ratio being unaffected by drift) and tha t  the 
extrapolation line, when plotted in Fig. 2(b), will be 
a horizontal line, representing a constant (a/c) 2 value. 
The problem, then, is to find the horizontal line which 
is the line of best fit to the diffraction peak lines of 
Fig. 2(b). 

The  line of bes t  fi t  

Since it is known tha t  drift is greatest at  the lower 
angles and decreases as 0 approaches 90 °, it is apparent  
tha t  the line of best fit would have to intersect the 
diffraction peak lines in a definite sequence, tha t  is, 
from the lower angle lines to the higher angle lines 
in regular succession. In this instance, it would cross 
plotted lines 1, 2, 3, 4, 5, 8, and 12 in tha t  order or 
the inverse, depending upon whether drift is positive 
or negative. I t  is thus a simple mat ter  to place a 
straight edge horizontally across Fig. 2(b) and adjust  
it vertically until the lines appear to be intersecting 
the straight edge in the proper order. In this manner, 
the area of interest or the range of possible (a/c) 2 
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Fig. 2. Graphical extrapolat ion solution 

values can readily be restricted to a relatively small 
region. The line of best fit can then be found when 
consideration is taken of the fact that  the spacings 
along the extrapolation line into which it is subdivided 
by the various diffraction lines will be proportional 
to the angular values between the diffraction peaks 
when plotted to the linear extrapolation function. 

A simple device for producing a continuously vary- 
ing scale of the extrapolation function can readily be 
prepared by plotting all diffraction peak angular 
values to the scale of the extrapolation function along 
one ordinate and joining these points, by straight lines, 
t o  a common point on the other ordinate. Such a 
device, shown in Fig. 3, and which is similar to a 
BjurstrSm fan diagram (Azaroff & Buerger, 1958, 
p. 67), is drawn on transparent  paper or plastic and 
superimposed on Fig. 2(b). The transparent  fan plotter 
is moved about on the graph of the diffraction lines 
until the corresponding lines on the two graphs coin- 
cide (intersect) or come in closest proximity along a 
common horizontal line. This horizontal line gives the 
(a/c) 2 value, and the zero coordinate of this line (cor- 
responding to 0 = 9 0  ° ) gives the extrapolated value 
of a 2. 

The top of the graph, Fig. 2(a), is unessential, but 
may  be used as an aid in portraying the relationship 
between the drift line and the experimental data. 
The points of intersection of the drift line (in its 
horizontal projection) and the diffraction lines are 
plotted in the upper view against the extrapolation 
function. The scatter, as well as the drift, in the data 
is thus graphically shown. If certain of the data are 
more reliable than others, the scatter from these 

(cosa8 + co~2------~ e ~  ) / 

2 SINe 

Fig. 3. Ex t rapo la t ion  fan plotter .  

points may often be minimized through a judicious 
adjustment of the horizontal line of best fit. 

R e s u l t s  

The results obtained graphically for the equiatomic 
Ti-A1 alloy are as follows: 

c=4.077, a=3.997 t~., c /a=l.020.  

Previous results on an alloy of this same composition 
are reported by Duwez & Taylor (1952). From graphs 
of their results, the following are obtained: 

c=4.063, a=3.997 kX., c/a= 1.019. 

Converting kX. units to J~ gives: 

c=4.071, a=4.005  J~. 

I t  may  be seen that  the present results are within 
0'2% of those previously reported. The c/a ratios 
seem even closer, but it appears tha t  Duwez & Tay- 
lor's ratio might be more closely reported as 1-0165, 
which would make the agreement less good. As a check 
against some readily available tetragonal substance of 
well known lattice parameter% a graphical analysis 
was made of finely powered ~ tin. The a/c ratio was 
found to be 1.832, identical to the published value, 
and a was determined as 5.832 A, a discrepancy of 
only 0.001 A. (Barrett, 1952, p. 648). 

C o n c l u s i o n  

The above described graphical method of analysis 
eliminates much of the computational drudgery as- 
sociated with the least-squares solution, as well as the 
risk tha t  erroneous data may be introduced, leading 
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to an  incorrect  solution. It makes use of the  available 
da ta  in a single step solution, ra ther  t h a n  following a 
procedure of successive approximat ions  or depending 
upon an assumed value of c/a. 

For hexagonal  crystals the  direct  graphical  method  
may  be applied by  using the  appropr ia te  quadrat ic  
forms of the  Bragg equat ion:  

and  

(a /c )  9 = [4 s i n  e 0 / (2e le )  ]a  9 --  4 ( h  e + h k  + lce)/(3/9") 
(general form) 

a 9. = ~e(h2 + hic + k2)/3 sin 9' 0 (for hic0 p lanes) .  

We wish to thank the Materials Laboratory, Wright 
Air Development Division, Air Research and Develop- 

ment Command, for preparation of alloys and Prof. 
Lars Thomassen, University of Michigan, for a valuable 
discussion of the method herein described. 
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C r y s t a l  d a t a  of  p e r i o d a t e - o x i d i s e d  m e t h y l  4 , 6 - O - b e n z y l i d e n e - a - D - p ,  l u c o s i d e  a n d  s o m e  of  i t s  
d e r i v a t i v e s .  By J. O. W~WICKER, The British Cotton Industry Recearch Association, Shirley Institute, Man- 

chester 20, England (Received 17 May 1960) 

Interest  m the periodate-oxidation of methyl  4,6-O- 
benzylidene-a-D-glucoside arises because of the possible 
analogy with similar reactions occurring in the oxida- 
tion of cellulose. The oxidised product I 

/O--CH~ 
Ph" CH ~---0~,~ 

~./O~OMe 
v CH CH 

I 

(7,9 - dihydroxy - 6a - methoxy - 2 - phenyl-trans -m - dioxano - 
[5,4-e][I:4]-dioxepan) can be obtained with or without 
water of hydrat ion by crystallizing from water or from 
dimethyl sulphoxide respectively (Guthrie & Honeyman, 
1959). Needle crystals were obtained from dimethyl 
sulphoxide. The unit  cell dimensions derived from rota- 
tion and zero-layer Weissenberg photographs were: 

a=24.06,  b=13.18, c=4 .50 /~ ;  

the space group was P212121. Consideration of the short 
c-axis dimension and the space group P212,21 showed 
tha t  it was improbable tha t  dimers are formed, and tha t  
the correct value of Z is 4. The measured value of density 
by flotation was 1.401 g.cm. -a. The calculated molecular 
weight was 301 in good agreement with 298.3, tha t  
calculated from the postulated formula I. This provided 
evidence additional to tha t  of Guthrie & Honeyman 
(1959) for the correctness of the formula I proposed by 
them.  

Compound I is of interest because it contains a seven- 
membered ring whose exact conformation and disposition 
of attached groups are unknown. Some preliminary 
structural studies to t ry  to elucidate these features were 
unsuccessful. 

An analogue of I, compound I I  (2-o-bromophenyl- 
6~,7,9 .trimethoxy.trans-m-dioxano[5,4-e] [1 : 4]-dioxepan) 
gave needle crystals from ethanol (Colbran, Guthrie & 
Parsons, 1960). 

/O--CH  

I r~Me OMe 

I I  

The unit-cell dimensions were: 

a=12.69,  b=30.12, c=4 .43 /~ ;  

the space group was P212121. The observed density found 
from a density-gradient column was 1.582 g.cm. -3, and 
for Z =4  the calculated molecular weight was 403.3 in 
agreement with 405.2 calculated for II .  

The conformation of the seven-membered ring and the 
disposition of the methoxy groups are again unknown. 
The presence of the bromine atom in this molecule should 
help in the elucidation of the structure, but  no further 
work is contemplated at  the moment. 

The phenylhydrazine derivative of I, thought  to be I I I ,  


